Defining the conformation of the estrogen receptor complex that controls estrogen-induced apoptosis in breast cancer.

نویسندگان

  • Ifeyinwa Obiorah
  • Surojeet Sengupta
  • Ramona Curpan
  • V Craig Jordan
چکیده

Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as "estrogen-like" or "antiestrogen-like" complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CASPASE DEPENDENT APOPTOSIS INDUCED BY CLADRIBINE IN THE ESTROGEN RECEPTOR NEGATIVE BREAST CANCER CELL LINE, MDA-MB468

The purpose of the present study is to investigate the cytotoxicity/apoptotic effect of 2-chloro-2′-deoxyadenosine, cladribine, (2-CdA) in the human breast cancer cell line, MDA-MB468 (estrogen receptor negative, ER−). MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide] assay, annexin V-Fluorescein/PI and Hoechst 33258 staining were used to detect cytotoxicity and cell apopto...

متن کامل

P-195: Thymoquinone Increases Efficacy of Tamoxifen Induced Apoptosis in Human Breast Cancer MCF-7 Cells: In Vitro

Background: The objective of this study is to evaluate combined effect of Thymoquinone (The main active component of black seeds) with Tamoxifen drug on apoptosis of human breast cancer MCF-7 cells (Noninvasive human breast cancer cell line, estrogen receptor positive). Materials and Methods: The human breast cancer MCF- 7 cells were treated with Tamoxifen (2 μM) alone or in combination with Th...

متن کامل

Genetic polymorphisms in the estrogen receptor - α Gene codon 325(CCC}CCG) and risk of breast cancer among Iranian women: a case control study

  Abstract   Background: The Iranian breast cancer patients are relatively younger than their   Western counterparts. Evidence suggests that alterations in estrogen signaling pathways , including estrogen receptor-α (ER- α ), occur during breast cancer development in Caucasians. Epidemiologic studies have revealed that age-incidence patterns of breast cancer in Asians differ from those in Cauca...

متن کامل

Defining the Conformation of the Estrogen Receptor Complex That Controls Estrogen-Induced Apoptosis in Breast Cancer s

Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth inMCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the lon...

متن کامل

Effect of Extremely Low–frequency Electromagnetic Field on Apoptosis Iinduction and Expression of Estrogen Receptor, Progesterone Receptor, and ERBB2 in BT-474 Cells

Introduction: Breast cancer is the most common cancer and the first cause of cancer-related death in women worldwide. Although admirable achievements have been made in finding new therapeutic interventions, introducing efficient approaches with the least side effect is still undoubtedly demanded. Exposure to extremely-low frequency electromagnetic field (ELF-EMF) with specific parameters of fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 2014